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Optical Flow Motion Estimation for Approximate
Motion Compensation in Cone-Beam CT

Colas Schretter, Fabian Pilatus, Georg Rose, Til Aach and Matthias Bertram

Abstract—Image quality of volumetric image reconstructions is often
degraded by residual patient motion when using slowly rotating C-
arm systems or radiotherapy linear accelerators. If the patient does
not manage to hold his or her movements during data acquisition,
the image resolution is impaired by strong motion blur artifacts. This
work proposes a method to detect and to estimate arbitrary patient
motion. The motion information is used within a motion-compensated
variant of the FDK algorithm to improve the image quality. Results of
two related experiments are shown. First, the motion is estimated in
projection space by optical flow-based elastic image registration, using
reference projections of a known static image. The motion-compensated
FDK reconstruction from a simulated free breathing acquisition shows
very good agreement with the objective image. Second, the motion is
estimated from approximate reference projections that are computed by
the SART method, using solely the acquired data.

Index Terms—X-ray tomography, image registration, motion estima-
tion, motion segmentation, motion compensation.

I. INTRODUCTION

MOTION ESTIMATION is an ubiquitous problem in medical
applications of computed tomography (CT). Each acquired

projection is a sharp snapshot of the anatomy. However, the whole
acquired dataset might be inconsistent if organ motion occurred
during the acquisition. Data inconsistencies introduce motion blur
artifacts in the reconstructed image. Those artifacts are even more
prominent when using a slowly rotating gantry CT scanner, such
as interventional C-arm or radiotherapy systems. On these systems,
a typical acquisition last for about 8 s to 20 s and often, the
patient is not able to hold the breath constantly. Furthermore, other
unwanted non-periodic movements such as nervous shaking or bowel
contractions can corrupt the data.

Optical flow has been applied with success for motion estimation
in medical imaging. Gilland et al. used a variant of the seminal paper
of Horn and Schunck [1] for estimating cardiac motion in emission
tomography [2]. The present work aims to improve the image quality
of soft tissue volumetric imaging on C-arm systems and relies on the
optical flow-based elastic image registration algorithm proposed by
Barber et al. [3]. His algorithm provides an automatic regularization
of the deformation grid and is both fast and robust.

Our motion estimation and compensation approach has been first
developed in the context of parallel-beam tomography [4], using
the exact reconstruction algorithm of Desbat et al. [5]. The present
work extends the method to the cone-beam geometry and validates
it on physiologically plausible motion. The motion-compensated
reconstruction relies on the heuristic algorithm of Schäfer et al. [6].
Taguchi and Kudo analyzed the properties of this algorithm [7] and
concluded that “the fan-beam and cone-beam versions of Schäfer’s
method are a very good approximation of the exact method.” This
statement is confirmed by our experiments.
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Figure 1. Illustration of the reconstructed region of interest (ROI) observed
by all projections, in cone-beam geometry. The ROI is a truncated cylinder
caped by two Chinese hats and is smaller than the whole field of view (FOV).
The fan angle is 18.9◦. The maximum cone angle is 14.7◦. The definition
of reconstructed images is 256× 256× 198 voxels.

The remaining of this paper is organized as follows. Notations and
the approximate motion-compensated Feldkamp Davis Kress (FDK)
algorithm are defined in section II. Section III outlines the motion es-
timation and segmentation method. Results of experiments conducted
on a realistic respiratory phantom are discussed in section IV. Finally,
conclusions are drawn in section V.

II. BACKGROUND

With circular trajectory and cone-beam geometry, divergent X-
rays are emitted from a point source and attenuated intensities are
measured by a planar detector. The point source is located at distance
R from the rotation axis and the detector is positioned at distance
R +D from the point source such that the radius of the cylindrical
field of view (FOV) is equal to D. The region of interest (ROI)
that should be reconstructed is composed of image voxels that are
observed in every projection. The geometry of a realistic C-arm
system illustrated in Fig. 1 is simulated by choosing R = 5D.

When the arm is oriented at angle α ∈ [0, 2π), the position of
the point source is Rdα where the vector dα = (cosα, sinα, 0) is
normal to the detector plane. The perspective projection operator

Pα (x, y, z) = (y cosα− x sinα, z)
(R+D)

U
(1)

maps a point (x, y, z) ∈ R3 defined in object space to a point
(u, v) ∈ R2 defined in projection space. The denominator in (1)
is the perspective factor

U = Uα (x, y) = R+ x cosα+ y sinα (2)

which is equal to the distance between the source and the orthogonal
projection of the voxel position on the central plane. The central plane
contains the source point and is orthogonal to the rotation axis.

The adjoint of the perspective projection operator

P ′α (u, v) = (−u sinα, u cosα, v)
R

(R+D)
(3)

maps a point (u, v) ∈ R2 defined in projection space to a point
on a virtual detector defined in object space. The constant ratio
R/ (R+D) is called the magnification factor. The virtual detector
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(a) Acquired (b) Reference (c) Deformation grid

Figure 2. A specific deformation from motion estimation in projection space.
Each acquired projection (a) is deformed on the corresponding reference
projection (b) by elastic image registration based on optical flow. The resulting
reverse deformation grid (c) is an approximation of the perceived motion.
Independent registrations are performed for every pairs of projection.

shares the same orientation with the real one, but is smaller, propor-
tionally to the magnification factor and centered on the origin of the
FOV. Note the relation

Pα
(
P ′α (u, v)

)
= (u, v) ∀ (u, v) ∈ R2, (4)

however (3) is not the inverse of (1) since P ′α (Pα (x, y, z)) =
(x, y, z) is true only for points that lie on the virtual detector, when
U = R and thus, when x cosα+ y sinα = 0.

Let ft (x, y, z) → R, a dynamic volumetric image where
(x, y, z) ∈ R3 are Cartesian coordinates in image space and the
subscript t ∈ [0, 1) is a normalized time variable. The function ft is
compactly supported in the cylindrical FOV such that ft (x, y, z) = 0
when

√
x2 + y2 > D. Let gt (u, v) → R, the line integrals of ft

where (u, v) ∈ R2 are Cartesian coordinates in projection space. The
values of acquired line integrals are equal to

gt (u, v) =

∫
ft
(
(1− s)Rdα + sP ′α (u, v)

)
ds, (5)

with α = 2πt. Points of the integrated line segment connecting the
X-ray source to a pixel of the detector are selected by varying the
integration parameter s > 0.

A. Motion Model

The motion model can be seen as an extension of the admissible
class of motion suggested by Desbat et al. [5] and is represented by
a dynamic displacement vector field in projection space Dt (u, v)→
R2 and a normalized scalar field in image space M (x, y, z) ∈ [0, 1].
The associated image M indicates for each voxel if some motion
occurred during the acquisition. This segmentation information is a
key for successful local motion compensation.

The displacement of image elements in object space is modeled
by backprojecting the displacement field Dt and weighting vectors
with the scalar field M . Displacements expressed by

∆t (x, y, z) = P ′α (Dt (Pα (x, y, z)))M (x, y, z) , (6)

with α = 2πt. The trajectories of image elements along time are
given by applying the displacement in (6), relatively to the initial
position of image elements. Trajectories are expressed by

Γt (x, y, z) = (x, y, z) + ∆t (x, y, z) , (7)

where the displacement vectors of ∆t lie on the detector plane and
thus represent only the component orthogonal to the projection ray.

A particularity of the model is that neither periodicity nor spatial or
temporal smoothness of the underlying motion is assumed. Therefore
it could capture unwanted sudden patient motion such as hiccups,
breath-hold failures, or bowel movements, for example. Although the
model is approximate, our experiments demonstrate that it has the
potential to capture local motion very well. The success of motion
compensation mainly depends on the accuracy of motion estimation.

(a) Detected motion (b) Thresholding (c) Regularization

Figure 3. A specific coronal slice from motion segmentation in image space.
The motion is first detected by reconstruction of absolute differences between
acquired and reference projections (a). Then, a segmentation is obtained by
thresholding (b). This binary map is regularized with a non-linear max filter
and edges are smoothed by Gaussian filtering to produce the motion map (c).

B. Motion-Compensated Image Reconstruction

For motion compensation, a modification is introduced within
the FDK algorithm by displacing the projected position of voxels
before fetching the pre-weighted filtered line integrals, denoted here
by g∗t . The motion model defined in (7) is inserted in the back-
projection of FDK and the reconstruction of a static volumetric image
f (x, y, z)→ R is computed as follows:

f (x, y, z) =

∫ 1

0

R2

U2
g∗t

(
PΓ
α (x, y, z)

)
dt, (8)

with α = 2πt and

PΓ
α (x, y, z) = Pα (Γt (x, y, z))

= Pα
(
(x, y, z) + P ′α (Dt (Pα (x, y, z)))M (x, y, z)

)
= Pα (x, y, z) +Dt (Pα (x, y, z))M (x, y, z) . (9)

Using the property pointed out in (4), the motion-compensated
FDK algorithm can be implemented in projection space by displacing
the projected position of the current image element, as shown by the
last expression in (9).

III. METHOD

The motion estimation method is split into three sequential steps
which are solved by standard algorithms from the image reconstruc-
tion and image processing communities. First, a sequence of reference
projections is synthesized from the acquired projections, using a pilot
image reconstruction. Second, a 2D displacement vector field that
maps every acquired projection on its corresponding reference projec-
tion is computed using optical flow-based elastic image registration,
as shown in Fig. 2. Third, a binary segmentation is obtained from the
reconstruction of absolute difference between acquired and reference
projections, as shown in Fig. 3. The motion segmentation can be
executed in parallel with motion estimation. Finally, a static image
is reconstructed with the modified FDK algorithm in (8) that uses
both the motion estimate and the segmentation to apply locally a
compensation during the back-projection step. The three steps of the
method will be described in more details in the following sections.

A. Computing Reference Projections

Motion estimation requires a reference static image f̂ (x, y, z)→
R from which a set of reference projections ĝα (u, v) is forward
projected, with one projection per acquisition angle α ∈ [0, 2π). The
simultaneous algebraic reconstruction technique (SART) proposed
by Andersen and Kak [8] is used to reconstruct a pilot image
from the available acquired projections. By principle, iterative image
reconstruction techniques try to estimate an image such that the error
between forward projection and input projections is minimized. A
corollary is that the forward projection of the image will be more
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Figure 4. Transversal views of frames 1, 6, 11, 16, 21, 26, 31, and 36 of the breathing dynamic phantom from a respiratory-gated helical CT acquisition.
The first four and last four frames correspond to exhalation and inhalation, respectively. Pulled by contraction of the thoracic diaphragm, organs leave the
selected transversal slice during inhalation. By relaxing the contraction of the diaphragm, the air is expulsed naturally during exhalation.

robust to possible projection truncations that often arise in cone-beam
geometry, see Fig. 1.

It is known that, if data are consistent, the reference projections
will match the acquired projections in the weighted least square
sense when using SART. However, if acquired data are corrupted
by unwanted patient motion, the iterative reconstruction will never
converge and the image will contain motion blur artifacts. This pilot
image is nevertheless valuable for sampling approximate reference
projections. Experiments demonstrate that even if the resolution of
those approximate reference projections is limited by motion blurring,
their quality is sufficient for motion estimation in projection space.
The SART method is used because of its fast convergence rate but
another reconstruction algorithm could have been used as well.

B. Motion Estimation in Projection Space

The perceived deformation between each pair of acquired projec-
tions gt and corresponding reference projections ĝα is represented in
projection space by the bijective mapping function Dt (u, v) → R2

that map gt (u, v) on ĝα (u, v), with α = 2πt:

ĝα (u, v) = gt ((u, v) +Dt (u, v)) , ∀ (u, v) ∈ R2. (10)

In this paper, the displacement vectors Dt are computed using the
optical flow principle introduced by Horn and Schunck in 1981 [1].
The brightness of a particular point of the projection gt is assumed
to remain constant over time, so that

∂gt
∂t

= −Dt ·
(
∂gt
∂u

,
∂gt
∂v

)
. (11)

Provided that the displacement vectors in (11) are small, the chain
rule for differentiation gives

ĝα − gt = Dt ·Gt, (12)

where Gt contains gradient vectors that capture the direction and the
amplitude of the intensity change between the two images ĝα and
gt. Partial derivatives are approximated by finite differences.

For robustness, the components of gradient vectors are computed
for both the source and target images and then averaged such that

Gt =
1

2

(
∂ĝα
∂u

+
∂gt
∂u

,
∂ĝα
∂v

+
∂gt
∂v

)
. (13)

In the implementation, vectors of (13) are averaged at a coarse
grid of control points and then interpolated back for every pixel.
This procedure improves the numerical stability but also reduces the
resolution of the deformation vector field. The optimal deformation
Dt is iteratively estimated by the conjugate gradient descent imple-
mentation of Barber et al. [3]. The objective function minimizes the
sum of squared differences between ĝα and gt while a regularization
term penalizes the updates of Dt to avoid irregularities in the final
deformation. The penalization is proportional to the Laplacian of the
deformation vector field computed in the previous iteration. For the

first iteration, the initial deformation is a zero vector field and no
regularization term is used.

C. Motion Segmentation in Image Space

For detecting motion in image space, data inconsistencies are first
identified in projection space by computing the absolute differences
dt = |ĝα − gt| , α = 2πt. The differences dt are evaluated indepen-
dently for each acquired projection and are reconstructed to detect
the voxels strongly affected by motion. The reconstruction relies on
the regular FDK algorithm. Finally, a threshold is applied to yield a
binary image that is regularized to give the final motion map.

In experiments the reconstruction of differences is post-processed
with the following procedure. First, a binary mask is created by
thresholding the image at 100 Hounsfield units (HU). Then, a non-
linear max filter with a spherical structural element of radius 2 is
applied to grow the segmented region. Finally, edges between moving
and non-moving regions are smoothed by convolving the binary
image with a volumetric Gaussian kernel. Note that the end result
is the same if the threshold is applied after the max filter. Alternative
post-processing pipelines may equally fulfill the regularization task.

IV. RESULTS

In this paper, all slices are extracted from volumetric images
represented by a Cartesian grid of 256×256×198 isotropic voxels
of size equal to 1.36 mm. Gray is set to the attenuation of water and
the window width equals 1000 HU such that black corresponds to the
attenuation of air. To simulate a motion-corrupted acquisition, a set of
360 projections for one full circular rotation was forward-projected
from the dynamic free-breathing phantom shown in Fig. 4.

The dynamic phantom is a sequence of 40 frames reconstructed
from a respiratory-gated helical CT acquisition. The speed of the
CT gantry was 0.444 s per rotation. The duration of the acquisition
was 93.3 s during which 26 breathing cycles were observed. The
mean duration of breathing cycles was 3.6 s. Images still contain
some blurring, due to helical artifacts and residual motion within
each gate of the breathing cycle. The simulated acquisition time was
12 s, matching the typical rotation speed of a C-arm system when
used for soft tissue imaging. The experiments validate the method on
a challenging scenario, when the patient is breathing freely.

For the first experiment, reference projections have been computed
by the SART method while for the second experiment, reference
projections have been simulated from a chosen reference frame of
the dynamic phantom. Using a ground truth static reference image, it
is possible to assess the accuracy of the motion estimation and com-
pensation method by measuring the similarity of the reconstructed
image with the reference image. Quantitative analyses consider only
voxels where motion compensation is applied. The mean absolute
error (MAE) equals 151 HU without motion compensation and 61 HU
with reference motion estimation.

Results of image reconstructions are shown in Fig. 5. Without
compensation, the border of the myocardium and vessels appear
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Figure 5. Results of image reconstructions for the two motion estimation experiments, compared to a static reference frame. Two close-up views of 32× 32
pixels are selected per image and marked by the white frames. The border of the myocardium and the ribs contours get sharper. However, motion estimation
from approximate reference projections did not succeed to suppress the blurring observed at the border of the respiratory diaphragm.

blurred in transversal views and the border of the diaphragm is very
fuzzy too in the coronal view. The second column shows that the
image gets sharper with motion estimation and segmentation using
approximate reference projections. The third column contains slices
of the reconstructed image when using reference projections from a
known static image for motion estimation. The motion-compensated
image is very close to the reference image shown in the last column.

V. CONCLUSIONS

This work proposes a practical technique to improve image qual-
ity when acquired data are corrupted by arbitrary patient motion.
First an iterative reconstruction is performed to produce a set of
reference projections. Then, the perceived motion is estimated in
projection space by elastic image registration and segmented in image
space by reconstructing the absolute differences between acquired
and reference projections. Finally, a motion-compensated image is
reconstructed by a slightly modified FDK implementation. Motion
blur artifacts are locally reduced with motion compensation.

The method has been validated on experiments using a dynamic
phantom reconstructed from clinical patient data on experiments.
Results demonstrate a great potential to estimate and compensate
breathing motion. Since the underlying motion model does not
assume periodicity, our technique could capture arbitrary residual
patient motion that could corrupt the data in breath-hold acquisitions.

ACKNOWLEDGMENT

The authors gratefully thank David Barber for sharing the Sheffield
image registration toolkit (ShIRT) that was used for computing optical
flows. They also thank Jens Wiegert for his advices about image
reconstruction and Thomas Köhler for sharing the breathing phantom.

REFERENCES

[1] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelli-
gence, vol. 17, no. 1, pp. 185–203, 1981.

[2] D. Gilland, B. Mair, and J. Parker, “Motion estimation for cardiac
emission tomography by optical flow methods,” Physics in Medicine and
Biology, vol. 53, no. 11, pp. 2991–3006, 2008.

[3] D. Barber, E. Oubel, A. Frangi, and D. Hose, “Efficient computational
fluid dynamics mesh generation by image registration,” Medical Image
Analysis, vol. 11, no. 6, pp. 648–662, 2007.

[4] C. Schretter, C. Neukirchen, M. Bertram, and G. Rose, “Correction of
some time-dependent deformations in parallel-beam computed tomogra-
phy,” IEEE ISBI Conference, pp. 764–767, 2008.

[5] L. Desbat, S. Roux, and P. Grangeat, “Compensation of some time
dependent deformations in tomography,” IEEE Trans. Medical Imaging,
vol. 26, no. 2, pp. 261–269, 2007.

[6] D. Schäfer et al., “Motion-compensated and gated cone beam filtered
back-projection for 3-D rotational x-ray angiography,” IEEE Trans. Med-
ical Imaging, vol. 25, no. 7, pp. 898–906, 2006.

[7] K. Taguchi and H. Kudo, “A simple motion tracking backprojection for a
class of affine transformation,” SPIE Medical Imaging, vol. 6913, 2008.

[8] A. Andersen and A. Kak, “Simultaneous algebraic reconstruction tech-
nique (SART): a superior implementation of the ART algorithm,” Ultra-
sonic imaging, vol. 6, no. 1, pp. 81–94, 1984.


