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Abstract—In emission tomography, images are usually repre-
sented by regular grids of voxels or overlapping smooth image
elements (blobs). Few other image models have been proposed
like tetrahedral meshes or point clouds that are adapted to an
anatomical image. This work proposes a practical sparse and
continuous image model inspired from the field of parametric
density estimation for Gaussian mixture models. The position,
size, aspect ratio and orientation of each image element is
optimized as well as its weight with a very fast online estimation
method. Furthermore, the number of mixture components, hence
the image resolution, is locally adapted according to the available
data. The system model is represented in the same basis as
image elements and captures time of flight and positron range
effects in an exact way. Computations use apodized B-spline
approximations of Gaussians and simple closed-form analytical
expressions without any sampling or interpolation. In conse-
quence, the reconstructed image never suffers from spurious
aliasing artifacts. Noiseless images of the XCAT brain phantom
were reconstructed from simulated data.

Index Terms—Time of flight (TOF), positron emission to-
mography (PET), Gaussian mixture model (GMM), B-spline
approximation, online expectation-maximization (EM).

I. INTRODUCTION

T IME-OF-FLIGHT (TOF) list-mode data acquisitions
have recently become the new industry standard in

positron emission tomography (PET). With the increasing
temporal resolution of TOF-PET scanners, the position of
annihilation events are better approximated but established
reconstruction methods often fail to exploit fully this impor-
tant information. While a wealth of publications address the
problem of accurate system modeling, very few papers define
suitable image models for emission tomography. Notable ex-
ceptions include the smooth blobs basis functions introduced
by Matej and Lewitt [1] and the work of Sitek et al. [2], [3].

A fundamental drawback of those image models is that the
number of image elements, their position and spatial extent is
defined a-priori before image reconstruction. Therefore, some
important high-intensity regions can be poorly resolved while
more emission data are collected there. Simultaneously, redun-
dant image elements cover regions where even no emission
event might occur. This paper introduces an alternative con-
tinuous and sparse image model for reconstructing adaptive-
resolution images from noisy TOF-PET data.
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Our new tomographic image reconstruction method builts
upon a synthesis of several previous works. The core of
the algorithm is essentially a simplification of a maximum-
likelihood method for mixtures of Student’s t-distributions [4],
[5]. This estimation algorithm has been adapted for online
estimation with the sliding windows expectation-maximization
(SWEM) framework [6]. SWEM is a generalization of the
event-by-event OSEM acceleration method [7] for adapting
an estimate to new data by discarding progressively the
contributions from older events.

II. METHOD

This section describes a online EM algorithm for event-by-
event (EBE) parametric estimation of a multivariate Gaussian
mixture model (GMM) when an estimate of measurement
errors is available with each list-mode event. Measurement
errors are captured by a covariance matrix modeling both TOF
localization and space-variant finite resolution effects that are
caused by positron range, photon non-collinearity and inter-
crystal scattering. Theoretical derivations of the estimation
method benefits from the many elegant algebraic solutions
for the Gaussian basis function. However, the computational
burden inherent to its infinite support is alleviated by a
substitution with the cubic B-spline kernel.

The principle of EBE image reconstruction is ideal for list-
mode data streams because detected events can be processed
directly during acquisition and the convergence is faster. The
online parametric estimation framework requires a strategy for
allocating dynamically mixture components. This problem is
solved with a novel split and merge strategy, sharing similar
name but different substance than the work of Ueda et al.
[8]. Our splitting and merging operations are applied for re-
fining or coarsening local image resolution while guaranteeing
monotonous increase in terms of likelihood.

A. Models for measured data and image representation

The TOF-PET list-mode dataset is the sequence

((w1, x1, S1), (w2, x2, S2), . . .) ∈ R× Rd × Rd×d

of independent and identically distributed point samples with
wn, xn and Sn being the importance, sample’s position
and covariance matrix of a multivariate Gaussian distribution
that model unbiased measurement errors. In TOF-PET data
acquisitions, the localization of emissions is very imprecise.

Nevertheless, if a sufficient amount of heteroscedastic noisy
measurements is available, it is possible to estimate the most
probable emission positions given the current parameters of



an image estimate. For each measurement (wn, xn, Sn), we
associate a latent variable tn for representing the corrected
emission position with the following hierarchical model:

p (xn|tn) = N (xn|tn, Sn) , p (tn|k) = N (tn|µk,Σk) ,

with the d-dimensional multivariate Gaussian kernel:

N (x|µ,Σ) =
(2π)

− d
2√

|Σ|
exp

[
−1

2
(x− µ)

>
Σ−1 (x− µ)

]
.

After diffusion of the PET tracer into tissues, the probability
to observe an emission event follows an underlying continuous
and smooth probability density function. Therefore, quantita-
tive emission images are well modeled by a mixture model:

f (t) =

K∑
k=1

πk p (t|k) .

The parameters of this GMM image model is the set

{(π1, µ1,Σ1), . . . , (πk, µk,Σk)} ∈ R× Rd × Rd×d

of K triplets with πk, µk, and Σk being the weight, mean
vector and covariance matrix of the kth freely positioned,
sized and oriented smooth Gaussian image element. There an
analogy between the data model and the image model.

B. Online expectation-maximization

Parameters of each component of the mixture model are up-
dated incrementally for each new measurement of importance
wn, approximate position xn and error kernel Sn. First the
E-step computes the posterior distribution i.e., the probability
that the emission event occurred in the vicinity of each mixture
component. Then, the M-step increments weights, displaces
means and updates covariance matrices of image elements.

According to the Bayes rule and after simplifying the
product of Gaussian densities, the posterior of the latent
variable tn is

p (tn|xn, k) =
p (xn|tn, k) p (tn|k)

p (xn|k)
= N

(
tn|µn|k,Σn|k

)
,

where

Σn|k = Sn (Sn + Σk)
−1

Σk =
(
S−1n + Σ−1k

)−1
,

µn|k = Σn|k
(
S−1n xn + Σ−1k µk

)
,

The computation of expectations are extremely simple in our
case since the convolution of two Gaussians is still Gaussian:

p (xn|k) =

∫
p (xn|tn) p (tn|k) dtn = N (xn|µk, Sn + Σk) .

Therefore, for each of the K components, relative ownerships
are computed for the current data sample xn, Sn by

p (k|xn) =
πkN (xn|µk, Sn + Σk)∑K
j=1 πj N (xn|µj , Sn + Σj)

,

and according to the recursive (incremental) maximization
scheme of Titterington [9], the update of weight, mean and
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Fig. 1. The finite-supported cubic B-spline kernel approximates very well the
Gaussian distribution. The difference plot emphasizes the slight dissimilarities.

covariance matrix for each component follows:

πk ← πk + p (k|xn)wn,

µk ← µk + p (k|xn)
wn

πk

[
µn|k − µk

]
,

Σk ← Σk + p (k|xn)
wn

πk

[
Σ̃n|k − Σk

]
,

with

Σ̃n|k =
[(
µn|k − µk

) (
µn|k − µk

)>
+ Σn|k

]
.

C. Active learning with sliding window

In the maximization step, the mean and covariance matrix of
each component is updated with an influence that is inversely
proportional to its weight. In consequence, the importance of
new data is decreasing according to a geometrical decay law
to ensure convergence. However, it is often wanted to use
a bounded amount of statistical information for estimation.
Learning from limited data is often used for the sake of
acceleration as in the case of OSEM. In dynamic image
reconstruction for example, only the most recent events should
contribute to the estimate.

A common solution for active learning is using a linear for-
getting rate α = 1/T for a chosen constant T > 0. The weight
of each component decays exponentially by multiplication
with α after each processed data element [10]. Unfortunately,
decaying weights never reach zero and this scheme often
suffers from numerical inaccuracies. In alternative, we use
a more accurate sliding window strategy, dubbed SWEM.
With SWEM, a history of the most recent weight increments
is recorded by a simple bookkeeping mechanism until their
integral reaches T . Then, older contributions can be subtracted
seamlessly and replaced by the newest expected weights.

In practice, a certain storage granularity is required for lim-
iting storage or memory requirements. The most recent history
is accumulated in 64 memory pages and older contributions
are removed sporadically by small batches. The granularity
should be chosen according to available memory resources
but virtually no difference in terms of speed and accuracy
was observed when using 32 pages instead of 64. A formal
description of SWEM with an additional window expansion
mechanism can be found in [6].

D. Model selection with split and merge

The image model defined above assumed that the number of
image elements K is known beforehand. Instead, we want to
select locally the image resolution and decide both the value



XCAT phantom Attenuation Emission

Fig. 2. High-resolution attenuation and emission images are rasterized from
the NURBS surface representation of the segmented XCAT brain phantom.

of K and the initialization of parameters in a principled way.
Starting from a unique component whose weight is initialized
to zero, the image model is locally refined according to the
amount of emission events, i.e., the weight of components.

Given a target weight W > 0, components are split in two if
their weights exceed 2W . The new components have identical
parameters but their means are displaced in opposite direction.
The weights of split components are halved, their means are
displaced and their matrix are squashed such that

πk ←
1

2
πk, µk ← µk ± ek

√
1

2
λk, Σk ← QkΣk,

where λk and ek = (uk, vk) are respectively the dominant
eigenvalue and eigenvector of the covariance matrix in e.g.,
two dimensions and Qk is an anisotropic squashing operator:

Qk =

[
uk −vk
vk uk

] [
1
2 0
0 1

] [
uk vk
−vk uk

]
=

[
1− 1

2u
2
k − 1

2ukvk
− 1

2ukvk 1− 1
2v

2
k

]
.

The displacement and the squashing deformation are chosen
such that the likelihood of the mixture model do not decrease
and such that the sum of the two split components remains
unimodal. The determinant of the covariance matrix is also
exactly divided by two after splitting. Moreover, a merge
operation removes non-essential components whenever their
weights fall below W/2. The weight and the history of re-
moved components are distributed among remaining neighbors
according to the sharing proportions derived by Vlassis and
Verbeek [11]. Those proportions are similar to the expectations
p (k|xn) but the trace of the covariance matrix of the removed
component is involved in calculations.

E. Cubic B-spline approximation

Presented as it is, the estimation method would require
an exceeding amount of computational resources since every
mixture component is modified for each measurement. In
our implementation, evaluations of the normal distribution are
substituted by the following cubic B-spline kernel:

N (x|µ,Σ) ≈ (2π)
− d

2√
|Σ|


2
3 − t

2 + 1
2 t

3 t < 1
4
3 − 2t+ t2 − 1

6 t
3 1 ≤ t < 2

0 otherwise

with
t =

[c3
3

(x− µ)
>

Σ−1 (x− µ)
]1/2

.
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Fig. 3. Visualization of the early estimation process until the first component
splitting. The mixture models (above) and the error distributions of emission
data (below) are compared with the case of exact TOF measurements.

Note that the support of this approximation is apodized
after four standard deviations. In two and three dimensions,
the factor c3 is respectively equal to the inverse of the area
and volume integral of the non-corrected (c3 = 1) radially-
symmetric cubic B-spline kernel. Hence, c3 ' 0.948965 in
two dimensions and c3 ' 0.900025 in three dimensions. Such
correction is not required for substitutions of one dimensional
mixture components. This approximation is very accurate, as
illustrated in Fig. 1 and shown theoretically in [12] and [13].

III. RESULTS

An emission image of the XCAT brain phantom shown in
Fig. 2 was reconstructed from 40 millions simulated detection
events. The Monte Carlo simulation modeled Gaussian random
walks between emission and annihilation and photon non-
collinearity with a FWHM of 2.8 mm. A TOF precision
of 600 ps corresponding to a FWHM of about 9 cm was
modeled as well. The attenuation probability was derived by
conventional raytracing in the anatomical image. We observed
that about 24.36 emission events were rejected before regis-
tering a coincidence event. Modeling more advanced physical
phenomena such as photon scattering will be added in future.

The effect of component splitting is illustrated by comparing
the third and last columns in Fig. 3. No attenuation was
simulated for this example such that every event have the same
unit importance. We remark that very similar component’s
parameters are estimated when an exact TOF information
is given. For the image reconstruction, the importance of
each event is set to the inverse of its attenuation probability,
compensating for the more important sampling of line of
responses corresponding to low attenuation. The distributions
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Fig. 4. The mixture model (right) is estimated from the stream of noisy TOF-PET measurements (left) and matches progressively the ground truth in Fig. 2.

of measurements errors are elongated multivariate Gaussians
positioned and oriented along line or responses.

The emission image was reconstructed with various values
of the parameters T and W . Some intermediate steps of the im-
age formation process are shown in Fig. 4 for T = 4, 000, 000
and W = 500, hence T/W = 8000. After processing 40
millions events, the mixture size reached 7010 components
with min. and max. weight of 258.9 and 982.5. The mean
component weight was 568.0 with std. deviation of 143.8.

Fig. 5 shows quantitative analyzes of the progressive con-
vergence towards the ground truth emission image. The con-
vergence is faster when using a smaller sliding window of
a total weight T of two millions (approx. 82,000 events).
The convergence speed is two times slower with T equals
to four millions. However, after convergence, the accuracy
of parametric estimation and the image similarity are always
better with larger values of T .

The image dissimilarity is measured in terms of Kullback-
Liebler (KL) divergence with a rasterized image of the mixture
model, matching the high-definition reference emission image
(0.5 mm pixels). The KL divergence is an appropriate figure
of merit for assessing images that are proportional to proba-
bility density functions [7]. Since the GMM image model is
continuous, rasterizing close-up images for regions of interest
does not introduce any interpolation artifacts.

IV. CONCLUSION AND FUTURE WORK

This work describes and evaluates a new approach for image
reconstruction from time of flight list-mode PET data. Pa-
rameters of a continuous and sparse image representation are
estimated by an online algorithm. The system model captures
exactly positron’s random walks and imprecise TOF measure-
ments. The image model is a mixture of multivariate Gaus-
sian basis functions and yields closed-form expressions for
both the E and M steps of maximum-likelihood expectation-
maximization methods. Results show that estimating large
mixtures is tractable when substituting Gaussians with finite-
support cubic B-spline polynomial kernels.

Future work will investigate a scale-space image represen-
tation with hierarchical mixtures for real-time reconstructions.
A hierarchy of mixture components allows for accessing
very quickly mixture components, given a query point and
its associated error distribution represented by a covariance
matrix. This multiresolution image model will be used for
interactive visualization as well.
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Fig. 5. The convergence towards the ground truth emission image is measured
in terms of Kullback-Liebler divergence for various values of T and W (left).
The simultaneous improvement of image similarity with the increasing number
of mixture components is also shown for the 100,000 first events (right).
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