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Abstract— Emerging ultrasound phased-array technologies
will soon enable the acquisition of high-resolution 3D+T images
for medical applications. Processing the huge amount of spa-
tiotemporal measurements remains a practical challenge. In this
work, dynamic ultrasound images are sparsely represented by a
mixture of moving speckles. We model the shape of a speckle
and its locally linear motion with a weighted multivariate Gaus-
sian kernel. Parameters of the model are estimated with online
Bayesian learning from a stream of random measurements. In
our preliminary experiments with a simulated phantom of a mov-
ing cylindrical structure, the optical flow of speckles is estimated
for a vertical line profile and compared to the ground truth. The
mean accuracy of the linear motion estimate is of 93.53%, using
only a statistically sufficient random subset of the data.

1 Introduction
Measuring strain in structural soft tissue, such as tendons, could
be an invaluable diagnostic tool for physicians [1]. For ex-
ample, in orthopedics, measuring strain in ligaments will as-
sist the placement procedure of joint implants and ultimately
decrease the number of follow-up procedures [2]. Recent de-
velopments in ultrasound (US) imaging allows for the acquisi-
tion of high resolution volumetric images. This technology en-
ables researchers to leverage existing imaging techniques such
as elastography [3] or model-based biomechanical simulations
of deformation [4] to the problem of assessing strain in ten-
dons. Unfortunatelly, these techniques are not yet capable of
capturing local motion occurring in small scale soft tissues.

In this work, we aim at adapting the speckle tracking
echocardiography (STE) technique [5] from cardiology to the
prescribed situation. Therefore, we propose a novel method
for directly estimating motion of a sparse selection of speckle
shape models instead of using detection and explicit tracking
[6]. Speckles are forming the characteristic granular appear-
ance in US images, which is due to deterministic interference
originating from sub-wavelength scattering sites [7]. We ap-
proximate speckles and their local linear motion with a mixture
of weighted multivariate Gaussian kernels. A Bayesian method
is used for parametric estimation of the mixture components,
which are representing the optical flow that is traced by the
trajectories of speckles. Preliminary results are shown for sim-
ulated one-dimensional vertical line profiles.

2 Data and Image Models
We collect echography measurements in a dense discrete spa-
tiotemporal amplitude field A(x, t), with x ∈ {1, . . . , Nx} and
t ∈ {1, . . . , Nt}. This matrix of real positive amplitude values
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Figure 1: Optical flow images of the input data consisting of 2597 echo mea-
surements over 9 discrete time frames (left) and the smooth continuous spa-
tiotemporal reconstruction using 16 multivariate mixture components (right).

is first normalized for every time frame t such that

Nx∑
i=1

A(xi, t) = 1, ∀t ∈ {1, . . . , Nt}.

We approximate A(x, t) with a continuous and smooth con-
ditional Gaussian mixture model G(x, t) having the form

A(x, t) ≈ G(x, t) =

K∑
k=1

wk
g(x, t; Θk)

g(t; Θk)
,

with the set of model parameters

Θ = {wk,Θk}Kk=1 with Θk =
(
µ, τ, σ2

x, σ
2
t , σxt

)
k

where g(x, t; Θk) can be decomposed as the product of a
marginal (temporal) and the conditional (spatial) distributions:

g(x, t; Θk) = g(t; τ, σ2
t )× g(x; µ̄, σ̄2

x),

where the parameters of the conditional distribution are

µ̄ = µ+
σxt
σ2
t

(t− τ) and σ̄2
x = σ2

x −
σxt
σ2
t

σ2
x,

and the Gaussian kernel g(x;µ, σ2) is defined by

g(x;µ, σ2) =
1√

2πσ2
exp

(
−1

2

(x− µ)2

σ2

)
.

Before estimating the mixture parameters, we first sample
A(x, t) by taking a subset of M � Nx ×Nt amplitude values

D = {(xm, tm, am)}Mm=1 with am = A(bxmc, btmc)

where (xm, tm) are drawn from the two-dimensional uniform
random distribution U(1, Nx)× U(1, Nt).

3 Reconstruction
The set Θ of all weights and parameters of the mixture model
G(x, t) is now estimated by maximizing the log-likelihood

L(Θ;D) = P (D; Θ) =

M∑
m=1

log

K∑
k=1

wk
g(xm, tm; Θk)

g(tm; Θk)
.
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Figure 2: Three selected frames of the moving cylinder phantom. The total
course of the cylinder was 2mm long, such that the measured global displace-
ment of the center of mass was 1.308mm.

We use the non-iterative online expectation-maximization
(EM) method [8, 9] for estimating the parameters. Online EM
alternates between performing an expectation (E-step) which
evaluates membership probabilities for the log-likelihood using
the current estimate of the parameters, and a maximization (M-
step), which updates parameters for maximizing the expected
log-likelihood found in the E-step. The model is first initialized
with a regular grid, then the two E- and M- steps are performed
successively for every sample, converging to the final model.

E-step When updating the model from the information car-
ried by the m-th sample (xm, tm, am), we first compute the
membership probability pk(xm|tm), expressing the probability
that the sample is drawn from the conditional distribution of the
component k at given time tm using

pk(xm|tm) =
wk g(xm; µ̄, σ̄2

x)∑K
k=1 wk g(xm; µ̄, σ̄2

x)
,

where the parameters µ̄ and σ̄2
x of the conditional distribution

are calculated as previously described.

M-step In the second step, the parameters are updated such
that the likelihood of observing the new sample is improved by
applying the following update rules:

wk ← wk (1 + α),

µ← µ+ δx α,

τ ← τ + δt α,


σ2
x ← (σ2

x + δ2x α) (1− α),

σ2
t ← (σ2

t + δ2t α) (1− α),

σxt ← (σxt + δx δt α) (1− α),

for each k ∈ {1, . . . ,K} with

α =
pk(xm|tm) am

wk
and

{
δx = xm − µk,
δt = tm − τk.

Initialization We initialize each component of a given index
k with the following weight wk = Nt/K and parameters

µ = (k − 1
2 ) Nx

K , τ = Nt

2 , σ
2
x =

N2
x

12K2 , σ
2
t =

N2
t

12 , σxt = 0.

As presented, the weights are systematically incremented for
every new sample in the M-step. In order to adapt smoothly to
new data, a “forgetting” mechanism should be used to adjust
parameters to the recent sufficient statistics. We simply apply a
multiplicative decay factor γ = 1 − 1/Nt to every component
such that the total mixture weight remains normalized to Nt.

4 Experiment
For this paper we use the Field II program [7] in order to sim-
ulate RF-signals from a linear US probe consisting of 192 (64
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Figure 3: Plot of original (gray) and reconstructed (black) vertical line profiles
for two selected time frames corresponding to the start (left) and end (right) of
dynamic data acquisition. The sparse reconstruction uses 16 kernels.

active) elements. To this end a 3D phantom is generated con-
taining a 10mm long high-intensity cylinder of 4mm radius.
The whole numerical phantom consists of 5000 uniformly dis-
tributed and amplitude-weighted random scatterers for a region
of 30×30×10mm3. This cylinder is then consecutively moved
downwards by 8 consecutive steps of 0.25mm along the vertical
axis, while the background is left unaltered.

For the simulation, the probe is positioned 15mm from the
phantom emitting a 3.5Mhz pulse focused at a depth of 30mm.
Afterwards the return signals is sampled at a frequency of
100Mhz. Using this method a total of 25 RF lines are cre-
ated on which we perform log envelope detection. The images
shown in Figure 2 show three temporal frames of the input data
after downsampling along the axial dimension by a factor 10.

For the experiment we created a 2D optical flow image
A(x, t) using the central vertical line profile line at all Nt = 9
temporal steps which is shown in Figure 1. The number of am-
plitude measurements for the profile lines is Nx = 2597, the
number of mixture components was set to K = 16, and the
average number of samples used for statistical estimations of
each component was set to was set to N = 512 such that the
total number of samples was M = NK = 8192.

Reconstructed line profiles in Figure 3 show that the lin-
ear motion of speckles covering the cylinder is successfully
captured with 16 mixture components. The center of mass in
the data shifted by 1.308mm between the start and end of the
simulation. The reconstructed displacement was of 1.224mm,
reaching a relative error of 6.47% in this experiment. Simi-
lar experiments have been conducted with 8 and 32 mixture
components. The motion extraction was not accurate with only
8 components, while we obtained comparable results with 32
components. We observed that the simulated speckle pattern
slightly deforms over time while following the displacement
path of the object. This effect has not yet been accounted for.

5 Conclusion
We represent dynamic ultrasound images as a mixture of mov-
ing speckle shape models that are approximated by smooth
weighted multivariate Gaussian kernels. Maximum likelihood
values of these kernel parameters can therefore be estimated by
a conditional expectation-maximization method, using simple
closed-form update rules. Experiments have been conducted
on a line profile of a simple cylinder phantom. We observed
that the sparse reconstruction approximates smoothly the ac-
quired data. The subtle motion of the moving structure on a
static background was successfully captured in the model. Fu-
ture work will consider modeling the space-variant point spread
function of speckles and extend the method to 3D+T imaging
for assessing results on clinical data.



Acknowledgment
This work is supported by the iMinds ICON 3DUS project and
the VUB Strategic Research Programme M3D2. S. Bundervoet
is supported by the grant nr.131813 from the Agency for Inno-
vation by Science and Technology in Flanders (IWT).

References
[1] T. J. Carter, M. Sermesant, D. M. Cash, D. C. Barratt, C.

Tanner, D. J. Hawkes, “Application of soft tissue modelling
to image-guided surgery”, Med. Eng. Phys. vol. 27, no. 10,
pp. 893–909, 2005.

[2] L. Scheys, P. Slagmolen, F. Morestin et al., “Non-invasive
measurement of regional intratendinous strain using dy-
namic ultrasound: An ex vivo validation experiment in
porcine patellar tendon”, Proc. of ISTA, Bruges, 20-23
September, 2011.

[3] L. A. Chernak and D. G. Thelen, “Tendon motion and
strain patterns evaluated with two-dimensional ultrasound
elastography”, Journal of Biomechanics, vol. 45, no. 15,
pp. 2618–2623, 2012.

[4] T. S. Pheiffer, R. C. Thompson, D. Rucker, “Model-based
correction of tissue compression for tracked ultrasound in
soft tissue image-guided surgery”, Ultrasound in Medicine
& Biology, in press, 2014.

[5] J. DHooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens,
F. Rademakers, et al., “Regional strain and strain rate mea-
surements by cardiac ultrasound: principles, implementa-
tion and limitations”, European Journal of Echocardiogra-
phy, pp. 154–170, 2000.

[6] C. B. Compas, B. A. Lin, S. Sampath et al., “Multi-frame
radial basis functions to combine shape and speckle track-
ing for cardiac deformation analysis in echocardiography”,
Functional Imaging and Modeling of the Heart, 6th Inter-
national Conference, LNCS 6666, pp. 113–120, 2011.

[7] J. A. Jensen, “Field: a program for simulating ultrasound
systems”, Medical & Biological Engineering & Comput-
ing, vol. 34, pp. 351–353, 1996.

[8] D. Mike Titterington, “Recursive parameter estimation us-
ing incomplete data”, Journal of the Royal Statistical Soci-
ety. Series B (Methodological), vol. 46, no. 2, pp. 257–267,
1984.

[9] R. Neal and G. E. Hinton, “A view of the EM algorithm that
justifies incremental, sparse, and other variants”, Learning
in Graphical Models, pp. 355–368, 1998.


