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EFFICIENT SCALABLE COMPRESSION OF SPARSELY SAMPLED IMAGES
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Fig. 1. Schematic diagram of the modified JPEG 2000 workflow
for compression from few pixels. The DWT stage is replaced by an
optimization solver for producing a maximally sparse set of wavelet
coefficients, interpolating missing image samples. Then the sparse
wavelet coefficients are quantized and compressed by EBCOT. The
gray background highlights our addition to the default encoder.

especially suited for efficient and scalable wavelet coefficient cod-
ing. EBCOT consists out of two parts: Tier-1 contains the actual
entropy coder and Tier-2 performs the rate-distortion optimization
to generate data packets. We would like to point out that, although
we modify the JPEG 2000 encoding system, the resulting bit-stream
is fully compliant with the JPEG 2000 standard.

3. WAVELET COEFFICIENTS RECOVERY

Given a limited collection of image samples, we use the compressed
sensing framework to estimate likely wavelet coefficients represent-
ing the underlying full image. Let f 2 RN be a single channel image
with N = N

x

⇥N

y

pixels that are vectorized in raster order. Statis-
tics of natural photographic images suggests that only few wavelets
coefficients are sufficient to represents salient visual features. We
hereby describe two priors for estimating such coefficients: The first
prior is based on conventional energy-minimization, and the second
prior assumes sparsity of wavelet decompositions.

Given a set of M << N measurements b 2 RM , we can ex-
press these image samples as coming from either the ground truth
original image f as well as two different image approximations f̂1

and f̂2 such that
b = �f = �f̂1 = �f̂2,

with corresponding decompositions in CDF9/7 wavelets

f =  x, f̂1 =  x̂1 and f̂2 =  x̂2,

where the sensing matrix � 2 RN⇥M is a binary mask selecting the
M measurements. We represented images f̂1 and f̂2 as coefficients
in CDF 9/7 wavelets [18] that are noted x̂1 and x̂2 respectively. The
matrix  2 RN⇥N contains footprints of all the N wavelet basis
functions up to the level 4.
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Fig. 2. l2-norm recovery (left) produces dense decompositions that
minimize the total energy of wavelet coefficients while the l1-norm
recovery (middle) produces sparse sets of coefficients that minimize
the complexity of the image representation. Recovered images from
15% of samples compare visually to the best-case theoretical bound,
i.e., 7.5% of the most significant original wavelet coefficients (right).

From the vector of data b and using the system matrix A = � ,
we compared two possible solutions. First, the minimum energy set
of coefficients x̂2 was retrieved by

f̂2 =  x̂2 with x̂2 = argmin
b=Ax

kxk2,

that is solved with the Moore-Penrose pseudo-inverse:

x̂2 = (A>
A)�1

A

>
b .

From now on, we refer to this l2-norm solution as a dense decompo-
sition since every coefficient has squared contribution in the l2-norm;
therefore, this solution has the tendency to limit the magnitude of co-
efficients such that the total energy is spread over many coefficients.

Alternatively, we sought for a sparse set of coefficients by
searching for the minimum l1-norm solution:

f̂1 =  x̂1 with x̂1 = argmin
b=Ax

kxk1,

that is solved with the iterative reweighted least squares (IRLS) al-
gorithm using the recurrence
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The IRLS method has been shown to converge to a sparse solution
with a certain class of iteration-dependent weighting matrices D(n)

that are functions of x̂(n)
1 [19]. In this work, we used the following

diagonal entries to minimize the l1-norm:

D

(n)
i,i

=

r⇣
x̂

(n)
1 (i)

⌘2
+ ✏

(n)

with the decreasing sequence of smoothing constants ✏(n) for allevi-
ating numerical instabilities with small coefficients [19].

We propose a practical JPEG 2000 compression system for efficiently 
compressing sparsely sampled images at lossy to near-lossless rates. We rely on 
a compressed sensing (CS) technique to compute an interpolative sparse 
wavelet decomposition. The basis functions used for sparse data representation 
in CS correspond to the CDF 9/7 wavelets which are used in the JPEG 2000 
system. The recovered coefficients are a good match for encoding with EBCOT.

From the JPEG 2000 bit-stream, a plausible interpolated image can be retrieved at the decoder side. 
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ILLUSTRATIVE EXAMPLE

Sparse decompositions are 
significantly more compressible, 
resulting in smaller residuals.

Among all possible 
regularizations, we compared 

minimum L2-norm and 
minimum L1-norm.
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SUMMARY

1. Sparse sampling for data acquisition  
Subsampling masks may be arbitrary. We 
emulated the data acquisition system by using 
a low-discrepancy quasi-random sequence to 
ensure nearly even but non regular sampling.

SYSTEM OVERVIEW

For large datasets, it is unpractical to explicitly store the system matrix. Instead, we implemented a 
fast lifting scheme for computing the transpose of the inverse CDF 9/7 wavelet transform. Then, we 
find a minimum norm reweighted solution of the inverse problem with a convergent iterative 
method such as LSMR (http://web.stanford.edu/group/SOL/software/lsmr/).

SOLVING THE COMPRESSED SENSING PROBLEM
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The sparse solution yields a 
simpler and sharper image.

L2 - minimum energy MSE: 4.10 (mean: 0.41, std-dev: 3.29, max: 196)
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2. Recovery of wavelet coefficients  
We solve a compressed sensing inverse 
problem for image representation. The sparse 
solution uses the set of CDF 9/7 wavelet 
basis functions used in the JPEG 2000.

3. Lossy JPEG 2000 EBCOT encoding  
Fitting in the standard JPEG 2000 entropy 
coder with rate-distortion optimization for 
generating JPEG 2000 compliant bit-streams.

System overview in 3 steps

Quality in function of compression rates for 5% 
(light gray) to 20% (black) undersampling rates.
Dotted lines are results for direct compressions of 
stacked image samples. (Plots for the Lena image.)
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